9,185 research outputs found

    Improved three-dimensional color-gradient lattice Boltzmann model for immiscible multiphase flows

    Get PDF
    In this paper, an improved three-dimensional color-gradient lattice Boltzmann (LB) model is proposed for simulating immiscible multiphase flows. Compared with the previous three-dimensional color-gradient LB models, which suffer from the lack of Galilean invariance and considerable numerical errors in many cases owing to the error terms in the recovered macroscopic equations, the present model eliminates the error terms and therefore improves the numerical accuracy and enhances the Galilean invariance. To validate the proposed model, numerical simulation are performed. First, the test of a moving droplet in a uniform flow field is employed to verify the Galilean invariance of the improved model. Subsequently, numerical simulations are carried out for the layered two-phase flow and three-dimensional Rayleigh-Taylor instability. It is shown that, using the improved model, the numerical accuracy can be significantly improved in comparison with the color-gradient LB model without the improvements. Finally, the capability of the improved color-gradient LB model for simulating dynamic multiphase flows at a relatively large density ratio is demonstrated via the simulation of droplet impact on a solid surface.Comment: 9 Figure

    Chemical turbulence equivalent to Nikolavskii turbulence

    Get PDF
    We find evidence that a certain class of reaction-diffusion systems can exhibit chemical turbulence equivalent to Nikolaevskii turbulence. The distinctive characteristic of this type of turbulence is that it results from the interaction of weakly stable long-wavelength modes and unstable short-wavelength modes. We indirectly study this class of reaction-diffusion systems by considering an extended complex Ginzburg-Landau (CGL) equation that was previously derived from this class of reaction-diffusion systems. First, we show numerically that the power spectrum of this CGL equation in a particular regime is qualitatively quite similar to that of the Nikolaevskii equation. Then, we demonstrate that the Nikolaevskii equation can in fact be obtained from this CGL equation through a phase reduction procedure applied in the neighborhood of a codimension-two Turing--Benjamin-Feir point.Comment: 10 pages, 3 figure

    Kaleidoscope of exotic quantum phases in a frustrated XY model

    Full text link
    The existence of quantum spin liquids was first conjectured by Pomeranchuk some 70 years ago, who argued that frustration in simple antiferromagnetic theories could result in a Fermi-liquid-like state for spinon excitations. Here we show that a simple quantum spin model on a honeycomb lattice hosts the long sought for Bose metal with a clearly identifiable Bose surface. The complete phase diagram of the model is determined via exact diagonalization and is shown to include four distinct phases separated by three quantum phase transitions
    corecore